Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The electronic and optical properties of InGaN-based solar cells alloys: First-principles investigations via mBJLDA approach

Identifieur interne : 000077 ( Chine/Analysis ); précédent : 000076; suivant : 000078

The electronic and optical properties of InGaN-based solar cells alloys: First-principles investigations via mBJLDA approach

Auteurs : RBID : Pascal:14-0046301

Descripteurs français

English descriptors

Abstract

First-principles calculations of the electronic and optical properties of the bulk InxGa1-xN alloys are simulated within the framework of full-potential linearized augmented plane-wave (FP-LAPW) method. To this end, a sufficiently adequate approach, namely modified Becke-Johnson (mBJLDA) exchange correlation potential is employed for calculating the energy band gap and optical absorption of InGaN-based solar cells systems. The quantities such as the energy gap, density of states, imaginary part of dielectric function, refractive index and absorption coefficient are determined for the bulk InxGa1-xN alloys, in the composition range from x = 0 to x = 1. It is found that the indium composition robustly controls the variation of band gap. From the examination of the density of states and optical absorption of InxGa1-xN ternary alloys, the energy gaps are significantly reduced for largest In concentration. The computed band gaps vary nonlinearly with the composition x. It is also surmised that the significant variation in the band gaps elaborated via the experimental crystalline growth process, is originated by altering the In composition. Interestingly, it is worthwhile to perform InGaN solar cells alloys with improved efficiencies, because of their entire energy gap variation from 0.7 to 3.3 eV.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0046301

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The electronic and optical properties of InGaN-based solar cells alloys: First-principles investigations via mBJLDA approach</title>
<author>
<name sortKey="Laref, A" uniqKey="Laref A">A. Laref</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, College of Science, King Saud University</s1>
<s2>11451 Riyadh</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>11451 Riyadh</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Altujar, A" uniqKey="Altujar A">A. Altujar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics and Astronomy, College of Science, King Saud University</s1>
<s2>11451 Riyadh</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Arabie saoudite</country>
<wicri:noRegion>11451 Riyadh</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Luo, S J" uniqKey="Luo S">S. J. Luo</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Science, Hubei University of Automotive Technology</s1>
<s2>Shiyan City, Hubei</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shiyan City, Hubei</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0046301</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0046301 INIST</idno>
<idno type="RBID">Pascal:14-0046301</idno>
<idno type="wicri:Area/Main/Corpus">000177</idno>
<idno type="wicri:Area/Main/Repository">000352</idno>
<idno type="wicri:Area/Chine/Extraction">000077</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1434-6028</idno>
<title level="j" type="abbreviated">Eur. phys. j., B Cond. matter phys. : (Print)</title>
<title level="j" type="main">The European physical journal. B, Condensed matter physics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>APW calculation</term>
<term>Absorption coefficient</term>
<term>Band structure</term>
<term>Chemical composition</term>
<term>Density functional method</term>
<term>Dielectric function</term>
<term>Electronic density of states</term>
<term>Energy gap</term>
<term>Gallium nitride</term>
<term>Indium nitride</term>
<term>Refraction index</term>
<term>Solar cell</term>
<term>Ternary alloy</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Densité état électron</term>
<term>Bande interdite</term>
<term>Cellule solaire</term>
<term>Méthode fonctionnelle densité</term>
<term>Calcul APW</term>
<term>Coefficient absorption</term>
<term>Structure bande</term>
<term>Fonction diélectrique</term>
<term>Indice réfraction</term>
<term>Composition chimique</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Alliage ternaire</term>
<term>InxGa1-xN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">First-principles calculations of the electronic and optical properties of the bulk In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys are simulated within the framework of full-potential linearized augmented plane-wave (FP-LAPW) method. To this end, a sufficiently adequate approach, namely modified Becke-Johnson (mBJLDA) exchange correlation potential is employed for calculating the energy band gap and optical absorption of InGaN-based solar cells systems. The quantities such as the energy gap, density of states, imaginary part of dielectric function, refractive index and absorption coefficient are determined for the bulk In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys, in the composition range from x = 0 to x = 1. It is found that the indium composition robustly controls the variation of band gap. From the examination of the density of states and optical absorption of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N ternary alloys, the energy gaps are significantly reduced for largest In concentration. The computed band gaps vary nonlinearly with the composition x. It is also surmised that the significant variation in the band gaps elaborated via the experimental crystalline growth process, is originated by altering the In composition. Interestingly, it is worthwhile to perform InGaN solar cells alloys with improved efficiencies, because of their entire energy gap variation from 0.7 to 3.3 eV.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1434-6028</s0>
</fA01>
<fA03 i2="1">
<s0>Eur. phys. j., B Cond. matter phys. : (Print)</s0>
</fA03>
<fA05>
<s2>86</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The electronic and optical properties of InGaN-based solar cells alloys: First-principles investigations via mBJLDA approach</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LAREF (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ALTUJAR (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LUO (S. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics and Astronomy, College of Science, King Saud University</s1>
<s2>11451 Riyadh</s2>
<s3>SAU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Science, Hubei University of Automotive Technology</s1>
<s2>Shiyan City, Hubei</s2>
<s3>CHN</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>475.1-475.11</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26688</s2>
<s5>354000501649390300</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>70 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0046301</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>The European physical journal. B, Condensed matter physics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>First-principles calculations of the electronic and optical properties of the bulk In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys are simulated within the framework of full-potential linearized augmented plane-wave (FP-LAPW) method. To this end, a sufficiently adequate approach, namely modified Becke-Johnson (mBJLDA) exchange correlation potential is employed for calculating the energy band gap and optical absorption of InGaN-based solar cells systems. The quantities such as the energy gap, density of states, imaginary part of dielectric function, refractive index and absorption coefficient are determined for the bulk In
<sub>x</sub>
Ga
<sub>1-x</sub>
N alloys, in the composition range from x = 0 to x = 1. It is found that the indium composition robustly controls the variation of band gap. From the examination of the density of states and optical absorption of In
<sub>x</sub>
Ga
<sub>1-x</sub>
N ternary alloys, the energy gaps are significantly reduced for largest In concentration. The computed band gaps vary nonlinearly with the composition x. It is also surmised that the significant variation in the band gaps elaborated via the experimental crystalline growth process, is originated by altering the In composition. Interestingly, it is worthwhile to perform InGaN solar cells alloys with improved efficiencies, because of their entire energy gap variation from 0.7 to 3.3 eV.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Densité état électron</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Electronic density of states</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode fonctionnelle densité</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Density functional method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Calcul APW</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>APW calculation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método onda plana mejorada</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Coefficient absorption</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Absorption coefficient</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Coeficiente absorción</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Structure bande</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Band structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Estructura banda</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Fonction diélectrique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Dielectric function</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Función dieléctrica</s0>
<s5>11</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Indice réfraction</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Refraction index</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Indice refracción</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Composition chimique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Chemical composition</s0>
<s5>14</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Composición química</s0>
<s5>14</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Alliage ternaire</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Ternary alloy</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Aleación ternaria</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>InxGa1-xN</s0>
<s4>INC</s4>
<s5>53</s5>
</fC03>
<fN21>
<s1>055</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000077 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000077 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:14-0046301
   |texte=   The electronic and optical properties of InGaN-based solar cells alloys: First-principles investigations via mBJLDA approach
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024